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In the traditional Drossel-Schwabl forest fire model �DS model�, the frequency distributions of fire size and
fire interval follow a power law and an exponential law, respectively. However, it is found that the frequency-
interval distribution of actual forest fires is not exponential, but a power law with periodical fluctuations which
may be caused by the daily cycle of weather parameters. Therefore, a weather driven forest fire model �WD
model� is built considering actual hourly weather records, with which the fire igniting probability is calculated.
The simulation results indicate that the frequency-interval distribution of the WD model agrees with that of
actual forest fire data and, at the same time, the frequency-size distributions of the WD and the DS models are
in accordance with each other. In the further analysis of the temporal property of weather data, it is found that
the change of weather data also exhibits a power-law relation with periodic fluctuations, implying that the
external driving from weather parameters is the essential reason for the power-law distribution of fire intervals.
The results suggest that natural systems may be coupled with each other and that the decoupling of systems is
important to identifying system characteristics.
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I. INTRODUCTION

During the past several decades, self-organized criticality
�SOC� introduced by Bak et al. �1,2� has been one of the
research focuses. The SOC system has continuous phase
transition whose dynamics turn the critical point into an at-
tractor �1–4�. It evolves into a steady critical state irrespec-
tive of initial conditions and without fine-tuning of param-
eters. In the steady state, the frequency-size or frequency-
intensity distribution of the dissipation events satisfies the
power-law relation. Power-law distributions have been found
in many actual systems and phenomena, including ecosystem
�5�, earthquake �6�, World Wide Web �7–11�, family names
�12�, rainfall �13–15�, citation of papers �16�, economic ac-
tivities �17,18�, population �19�, biological species or patches
�20,21�, forest fires �22–34�, etc.

Forest fires have attracted attention from different fields
�22–34�. The forest fire model introduced by Drossel and
Schwabl �22�, i.e., the DS model, has been claimed to be
self-organized critical and been used to explain actual forest
fire distributions. It is found that forest fires in the USA and
Australia �23–26�, Italy �27�, and China �28� exhibit good
power-law distributions over many orders of magnitude, con-
sistent with the model data. Considering the complexities of
the initiation and propagation of forest fires, it is remarkable
that the frequency-area statistics are very similar under a
wide variety of environments �27�.

However, in the traditional DS model, the time scales are
essentially infinitely separated and the interoccurrence times
are not quantified. At each sparking action in the DS model,
the forest density is approximately a stable value, therefore
the distribution of fire intervals exhibits exponential. From

the phase-transition perspective, the critical slowing down,
the divergence of relaxation times, and the disappearance of
characteristic time scales are expected to be observed. Both
solar flares, earthquakes, and forest fires have been found
exhibiting power-law first-return-time or quiescent-time dis-
tributions �35–38�. And other studies �39,40� argue that tem-
poral power law behaviors are based on the statistics of large
events greater than some prescribed threshold, but dynamical
temporal correlations among events of a sufficiently large
size are inherent in SOC.

In order to explore the reason for the temporal power-law
distribution of forest fires, in this paper, we study a weather
driven model �WD model� built based on the DS model, and
analyze the distribution characteristics of weather param-
eters. The advantages of forest fire study are the relative
simple dynamics and detailed records of both forest fires and
their impact factors. It is convenient to analyze and verify the
spatial and temporal variables.

II. DATA, MODEL, AND DISCUSSION

We analyzed five years’ �1996–2000� countrywide fire
records in Japan, in which all fires with a burnt area greater
than 100 m2 are recorded. Our main focus is on the system-
wide distribution of fire size and fire interval, i.e., duration
between the triggering times of two successive fires. First,
the frequency-interval distributions of the DS model and ac-
tual data are compared. It is found that the frequency-interval
distribution of actual forest fires does not follow exponential
relation as the DS model predicts, but behaves as a power
law spanning for 2–3 decades with periodic fluctuations, as
shown in Fig. 1.

The differences between the DS model and actual fire data
may be due to two reasons. The first one is the threshold
effect �39,40�. In the fire records, only fires greater than*Electronic address: wgsong@ustc.edu.cn
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100 m2 are recorded, those smaller than this threshold are
difficult to detect and record because of the complex condi-
tions in the forest and the large scale of the system. Above
this threshold, forest fires might have both spatial and tem-
poral correlations with each other. The second one is the
external driving. As shown in Fig. 1, the fire interval distri-
bution curve has periodic fluctuations deviating from the
power law. The fluctuations have a time interval of about one
day, reflecting the daily cycle of influence factors such as
weather parameters, which may impact the temporal distri-
bution of forest fires.

To confirm the first possible reason, i.e., threshold effect,
we analyze the DS model �22�. The model is a cellular au-
tomata model. The forest is represented with a L�L lattice,
in which trees grow with a probability p and fire occurs with
a lesser probability f � p. A burning tree will ignite all its
neighboring trees �except those already burnt� so that a forest
cluster will burn down in a single event.

We set different thresholds for the burnt area. Fires with
burnt area smaller than the threshold are ignored in the fire
distribution analysis. It is shown in Fig. 2 that the fire inter-

val distribution is exponential whether a threshold is applied
or not, which implies that the threshold effects or the preci-
sion of statistics is not the reason for temporal power law
distribution of forest fires.

There is a variety of weather parameters such as humidity,
temperature, wind speed, sunshine time, and so on. Although
these parameters influence forest fires synthetically, we con-
sider them one by one in order to explore the basic relation
between igniting probability and weather. Thus a weather
driven forest fire model �WD model� is introduced based on
the DS model. The rules of the new model are as follows.

�1� A burning tree becomes an empty site.
�2� A tree becomes a burning tree if at least one of its

nearest neighbors is burning.
�3� At an empty site a tree grows with probability p.
�4� A tree without a burning nearest neighbor becomes a

burning tree with probability f = f�h�; here h is the weather
parameter.

The only difference between the two models is the ignit-
ing rule or rule �4�. In the WD model, fire is not ignited
randomly, but with a probability related to the weather pa-
rameter. How to get the weather parameter and its relation to
the igniting probability is a core work in the model simula-
tion and analysis.

One of the most important weather parameters that influ-
ence forest fire is relative humidity. The dependence of the
igniting probability on relative humidity has been studied by
statistics �41�, as shown in Fig. 3. The relation is a mono-
tonic decreasing curve and, as an estimation, can be fitted as
a polynomial, as shown in formula �1�

f�h� = 3.04 � 10−4 − 6.71 � 10−6h + 3.668 � 10−8h2.

�1�

The igniting probability can be calculated with this for-
mula on the condition that the relative humidity value is
known. Figure 4 illustrates the hourly relative humidity
records in the Chiba weather station of Japan in 1999. The

FIG. 1. �Color online� Comparison between the DS model and
actual forest fires. It is shown that the frequency-interval distribu-
tions of the DS model and actual data differ qualitatively from each
other, i.e., the modeled one satisfies the exponential law and the
actual one satisfies the power law with periodic fluctuations. The
insets of the figures are log-linear plots of the same data.

FIG. 2. �Color online� Threshold effects in the DS model. The
frequency-interval distributions obey the exponential law, not the
power law, indicating that the threshold effect is not the reason for
the difference between the DS model and the actual data.
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average value of relative humidity undergoes monthly and
seasonal changes that may affect the igniting probability of
forest fires and thus affect the distribution of fire intervals.
The humidity data are input into the WD model and used to
calculate the igniting probability by formula �1�.

Simulation results of the WD model are shown in Figs. 5
and 6. It is demonstrated that the distribution of the fire area
obtained with the WD model satisfies the power-law relation,
which has the same characteristic as that of the DS model.
However, the interval distribution of the WD model does not
follow exponential law as the DS model, but a power law
with periodic fluctuations, of which the period is as large as
about 24 hours or one day, coinciding well with actual forest
fire data �see Fig. 1�. It seems clear that the driving of
weather parameters is the basic reason for the power-law

FIG. 3. �Color online� Relation between relative humidity and
igniting probability. The data is obtained through analysis of forest
fire records in countrywide Japan in 1999. The polynomial fitting is
f�h�=3.04�10−4−6.71�10−6h+3.668�10−8h2, with r square
�COD�=0.99051, SD=7.86184�10−6, and p value�0.0001.

FIG. 4. �Color online� Relative humidity records in a Chiba
weather station from 1999 to 2000. The changes of humidity with
time behave themselves with complex shapes and annual cycle.
The position of Chiba station is North latitude 35°36�, East
longitude 140°6.5�. The humidity data used here is from
http://www.data.kishou.go.jp/etrn/index.html

FIG. 5. �Color online� The frequency-area distributions of the
DS model and the WD model. The two distributions all obey the
power law and almost overlap with each other. The parameters used
in the DS model are f / p=1/1000. Those of the WD model are
f / p= f�h�=3.04�10−4−6.71�10−6h+3.668�10−8h2, n=50 time
steps per hour.

FIG. 6. �Color online� The frequency-interval distributions of
the WD model. The relation satisfies the power law with periodic
fluctuations. �a� Log-log plot; �b� log-linear plot.
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distribution and the periodic fluctuation of the fire interval.
To find out the underlying mechanism of weather driving, we
analyze the temporal change of humidity records.

If the weather data are converted into binary data, i.e., �0,
1� sequence, with an arbitrary given threshold, we can ana-
lyze their temporal change in a simple way. If the humidity
value is greater than the threshold, it is converted to “0,” and
otherwise, “1.” The value 0 represents the passive state dur-
ing which fire cannot occur. The value 1 means the active
state during which fire occurs easily. The length of each ac-
tive period will be proportional to that of the fire interval. It
is found that the size distribution of active lengths satisfies a
good power law with periodic fluctuations, as shown in Fig.
7. The results of different threshold, i.e., 50% and 40%, show
similar distribution behaviors. The similarity between active
length distribution of humidity data and fire interval distri-
bution confirms that the power-law distribution of fire inter-
vals is due to the external driving of weather parameters.
Although the exponential value of the two types of distribu-
tion is not equal, the qualitative characteristics are the same.

Moreover, it is observed in Fig. 8 that the humidity data
measured in different weather stations have similar distribu-
tion properties of both quantitative and qualitative aspects.
The three weather stations are located in different area of
Japan, i.e., Akita at North latitude 39°43� East longitude
140°5.9�, Asahikawa at North latitude 43°45.4� East longi-
tude 142°22.3�, and Chiba North latitude 35°36�, East lon-
gitude 140°6.5�. Despite these differences, the distribution
characteristic is similar. It is confirmed again that the exter-
nal driving of weather parameter is the key reason for the
power law and periodic fluctuations of frequency-interval
distribution of forest fires.

It is found that the fluctuations of humidity display long-
range correlation, i.e., power-law behavior �42�, indicating
that the humidity has spatial-temporal power law distribu-
tions. At the same time, the rainfall also exhibits spatial-
temporal power law distributions �14�, and the exponent is

similar to that of humidity. The humidity and rainfall might
be coupled with each other, just like the coupling between
humidity and forest fires. Such a kind of system coupling
may be popular in natural systems, adding to the difficulty of
identifying system characteristics.

III. CONCLUSIONS

In this paper, the temporal scaling of forest fires has been
connected with internal dynamics and external driving. For
the DS forest fire model, the fire interval distribution is
exponential-like, whether or not considering threshold ef-
fects. After taking into account the influence of typical
weather data, i.e., humidity, the results of the WD model
agree with actual forest fire records that both of them exhibit
power-law size and time interval distributions.

Through the study of forest fire models and actual fire
data, it seems clear to us that the external driving of weather,
instead of internal dynamics of forest fire, is the main reason
for the power-law scaling of fire intervals. The periodic fluc-
tuation is due to the daily weather cycle.

For a forest fire system, the driving comes from the
weather system and the distribution of the weather parameter
follows the power-law relation. Other complex systems, e.g.,
earthquake or sun flare, might also be influenced by external
factors that generate temporal power-law distributions. This
kind of system coupling might be common in nature and the
behaviors of a system might be mixed with those of other
systems. So how to identify system behaviors from those of
others, or decoupling of system behaviors, may be an inter-
esting research subject.
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FIG. 7. �Color online� Power-law frequency-interval distribution
of actual humidity data. The thresholds are 50% and 40%. It is
shown that the distributions corresponding to different threshold
values exhibit similar characteristics, i.e., power law with periodic
fluctuations. The inset is the log-linear plot of the same data
�threshold=50% �.

FIG. 8. �Color online� Steadiness of power-law distribution of
humidity data. Humidity records from different weather stations
exhibit similar characteristics, i.e., power-law frequency-interval
distribution with similar exponential values. The threshold used is
50%.
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